Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Inflamm Res ; 71(2): 183-185, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1611373

ABSTRACT

Growth Hormone-Releasing Hormone (GHRH) is a neuropeptide regulating the release of Growth Hormone (GH) from the anterior pituitary gland, and acts as a growth factor in a diverse variety of tissues. GHRH antagonists (GHRHAnt) have been developed to counteract those events, and the beneficial effects of those peptides toward homeostasis have been associated with anti-inflammatory activities. Our lab is interested in delineating the mechanisms governing endothelial barrier function. Our goal is to establish new grounds on the development of efficient countermeasures against Acute Respiratory Distress Syndrome (ARDS), which has been associated with thousands of deaths worldwide due to COVID-19. Herein we demonstrate in vivo that GHRHAnt suppresses LPS-induced increase in bronchoalveolar lavage fluid (BALF) protein concentration, thus protecting the lungs against edema and inflammation.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Lipopolysaccharides , Animals , COVID-19/complications , Growth Hormone-Releasing Hormone , Inflammation/etiology , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Proteins/chemistry , Pulmonary Edema/etiology , Pulmonary Edema/prevention & control , Reactive Oxygen Species , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , SARS-CoV-2
2.
Nat Commun ; 12(1): 6791, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1532053

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is a carboxypeptidase that degrades angiotensin II, thereby improving the pathologies of cardiovascular disease or acute lung injury. Here we show that B38-CAP, an ACE2-like enzyme, is protective against SARS-CoV-2-induced lung injury. Endogenous ACE2 expression is downregulated in the lungs of SARS-CoV-2-infected hamsters, leading to elevation of angiotensin II levels. Recombinant Spike also downregulates ACE2 expression and worsens the symptoms of acid-induced lung injury. B38-CAP does not neutralize cell entry of SARS-CoV-2. However, B38-CAP treatment improves the pathologies of Spike-augmented acid-induced lung injury. In SARS-CoV-2-infected hamsters or human ACE2 transgenic mice, B38-CAP significantly improves lung edema and pathologies of lung injury. These results provide the first in vivo evidence that increasing ACE2-like enzymatic activity is a potential therapeutic strategy to alleviate lung pathologies in COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , COVID-19/prevention & control , Lung Injury/prevention & control , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Acute Lung Injury , Angiotensin II , Animals , COVID-19/pathology , Carboxypeptidases , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Female , Humans , Lung/pathology , Male , Mice , Mice, Transgenic , Pulmonary Edema/pathology , Pulmonary Edema/prevention & control , Spike Glycoprotein, Coronavirus/drug effects , Vero Cells
3.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1239-L1243, 2020 06 01.
Article in English | MEDLINE | ID: covidwho-246452

ABSTRACT

Lethality of coronavirus disease (COVID-19) during the 2020 pandemic, currently still in the exponentially accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We argue for inhibition of the transient receptor potential vanilloid 4 (TRPV4) calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in COVID-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in COVID-19 patients with respiratory malfunction and at risk for lung edema. Perplexingly, among the currently pursued therapeutic strategies against COVID-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce COVID-19 lethality but will also preempt a distressing healthcare scenario with insufficient capacity to provide ventilator-assisted respiration.


Subject(s)
Betacoronavirus , Coronavirus Infections , Lung/virology , Pandemics , Pneumonia, Viral , Pulmonary Edema/prevention & control , TRPV Cation Channels/antagonists & inhibitors , COVID-19 , Calcium/metabolism , Coronavirus Infections/virology , Humans , Lung/metabolism , Pneumonia, Viral/virology , Pulmonary Edema/virology , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL